Direct decomposition of tensor products into subtensor products
نویسندگان
چکیده
منابع مشابه
Tensor Products
Let R be a commutative ring and M and N be R-modules. (We always work with rings having a multiplicative identity and modules are assumed to be unital: 1 ·m = m for all m ∈M .) The direct sum M ⊕N is an addition operation on modules. We introduce here a product operation M ⊗RN , called the tensor product. We will start off by describing what a tensor product of modules is supposed to look like....
متن کاملCard Shuffling and the Decomposition of Tensor Products
Let H be a subgroup of a finite group G. We use Markov chains to quantify how large r should be so that the decomposition of the r tensor power of the representation of G on cosets on H behaves (after renormalization) like the regular representation of G. For the case where G is a symmetric group and H a parabolic subgroup, we find that this question is precisely equivalent to the question of h...
متن کاملbivariations and tensor products
the ordinary tensor product of modules is defined using bilinear maps (bimorphisms), that are linear in eachcomponent. keeping this in mind, linton and banaschewski with nelson defined and studied the tensor product in an equational category and in a general (concrete) category k, respectively, using bimorphisms, that is, defined via the hom-functor on k. also, the so-called sesquilinear, or on...
متن کاملOperadic Tensor Products and Smash Products
Let k be a commutative ring. E∞ k-algebras are associative and commutative k-algebras up to homotopy, as codified in the action of an E∞ operad; A∞ k-algebras are obtained by ignoring permutations. Using a particularly well-behaved E∞ algebra, we explain an associative and commutative operadic tensor product that effectively hides the operad: an A∞ algebra or E∞ algebra A is defined in terms of...
متن کاملTensor Products of Modules
The notion of a tensor product of topological groups and modules is important in theory of topological groups, algebraic number theory. The tensor product of compact zero-dimensional modules over a pseudocompact algebra was introduced in [B] and for the commutative case in [GD], [L]. The notion of a tensor product of abelian groups was introduced in [H]. The tensor product of modules over commu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1973
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-1973-0366956-4